

V1.8

MODBUS OUTPUT SINGLE/DUAL AXIS INCLINOMETER

SCA116T/SCA126T

Technical Manual

PRODUCTION EXECUTION STANDARD REFERENCE

- o Quality management system certification: GB/T19001-2016 idt ISO19001:2015 standard (Certificate No.: 128101)
- o Quality management system certification: IATF16949: 2016 (Certificate No.: T178487)
- o GJB9001C-2017 Standard Weaponry Quality Management System Certification (Registration number: 02622J31799R0M)
- o Intellectual property management system certification: GB/T29490-2013 standard (Certificate No.: 41922IP00281-06R0M)
- o High-tech Enterprise (Certificate No.: GR201844204379)
- o ShenZhen Professional Dedicated Unique Innovative Enterprice(No.: SZ20210879)
- o CE certification: AT011611741E o FCC certification: AT011611742E
- o RoSH certification: 18300RC20410801
- o China National Intellectual Property Appearance Patent (Patent No.: ZL 201830752892.X)
- o Revision time:2022-11-23

Note: Product functions, parameters, appearance, etc. will be adjusted as the technology upgrades. Please contact our pre-sales business to confirm when purchasing.

▶ PRODUCTION

SCA116T & SCA126T is the MODBUS output inclination sensor launched by RION Technology for industrial field control. It uses RS485 hardware differential bus to transmit data. Built-in high-precision 16bit A / D differential converter, through the 5th order filtering algorithm, can measure the tilt and pitch angle of the sensor output relative to the horizontal plane. built-in high-precision digital temperature sensorl, the temperature drift of the sensor can be corrected according to the change of the built-in temperature sensor to ensure the high repeatability of the product in low temperature and high temperature environments. The output response frequency standard can be up to 18Hz. If a higher response frequency is needed, our company can customize it according to the user. The product belongs to a real industrial grade product, with reliable and stable performance, good scalability, and multiple output options. Suitable for various harsh industrial control environments.

▶ FEATURES

- ★ Single / dual axis inclination measurement
- ★ Two communication protocols are optional
- ★ Wide temperature operation -40 ~ + 85 °C
- ★ IP67 protection level
- ★ Direct lead interface

- ★ Range ±1 ~ ±90 ° optional
- ★ DC 9 ~ 36V wide voltage input
- ★ Resolution 0.01°
- ★ High anti-vibration performance> 2000g

▶ APPLICATION

- ★ Satellite antenna searching
- ★ Railway locomotive monitoring
- ★ Oil drilling equipment

- ★ Radar vehicle platform detection
- ★ Attitude navigation of underground drilling rig
- ★ Geological equipment tilt monitoring ★ Shield jacking application

- ★ Ship navigation attitude measurement ★ Various construction machinery inclination measurement
- ★ Measurement of the initial firing angle of the artillery barrel
- ★ Direction measurement based on the inclination angle
- ★ Attitude detection of the satellite communication vehicle

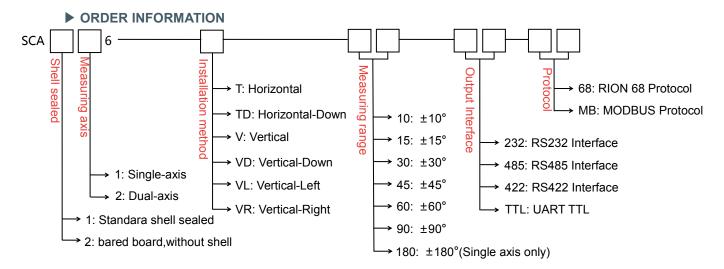
○3D COMPASS ○ACCELEROMETER ○GYRO ○NORTH FINDER ○INS&IMU RION TECHNOLOGY SINCE2008 · SENSING AND INDUSTRIAL CONTROL

▶ SPECIFICATIONS

SCA116T/126T	CONDITION PARAMETER UNIT								
Measure range		±10	±30	±60	±90	0			
Measure axis		ΧY	ΧY	ΧY	ΧY	axis			
Resolution		0.01	0.01	0.01	0.01	0			
Measure accuracy	@25 ℃	0.02	0.03	0.05	0.06	٥			
Long term.stability		0.05	0.05	0.05	0.05	٥			
Zero Temp.coefficient	-40 ~ 85℃	±0.006	±0.006	±0.006	±0.006	%℃			
Sensitivity temp-coeffi	-40 ~ 85℃	≤100	≤100	≤100	≤100	ppm/℃			
Power on time		0.5	0.5	0.5	0.5	S			
Response time		0.02	0.02	0.02	0.02	s			
Output rate		5Hz、1	5Hz、35Hz、	50Hz Optio	nal				
communication protocol		MOE	BUS / ROIN	l 68 Optional					
EMC		According	to EN61000	and GBT17	626c				
MTBF			≥98000 hou	rs/times					
Insulation Resistance			≥100M	ΙΩ					
Shockproof		100g@11ms.	3 Axial Dire	ection (Half S	Sinusoid)				
Anti-vibration		1	0grms、10 ~	- 1000Hz					
Protection grade			IP67						
Cables	Standard as	Ŭ	th, wear-resi elded cable 4		of, wide temp	perature,			
Weight		≤2200	g (including 1	meter cable)				

^{*} This performance parameter only lists ± 10 °, ± 30 °, ± 60 °, ± 90 ° series as a reference, for other measurement ranges, please refer to the most adjacent parameters.

KEY WORDS

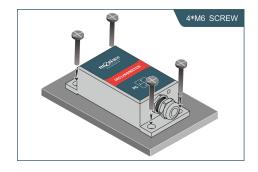

Resolution: Refers to the sensor in measuring range to detect and identify the smallest changed value. Measure accuracy: Refers to in the normal temperature circumstances, the sensor absolute linearity, repeatability, hysteresis, zero deviation, and transverse error comprehensive error.

Long term stability: Refers to the sensors in normal temperature conditions, the deviation between the maximum and minimum values after a year's long time work.

Response time: Refers to the sensor in an angle change, the sensor output value reached the standard time required.

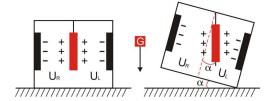
▶ ELECTRICAL PARAMETERS

PARAMETERS	CONDITION	MIN	TYPICAL	MAX	UNIT
Power supply voltage	Standard	9	12、24	36	V
	Optional		5		V
	5V		42		mA
Working current	12V		26		mA
	24		17		mA
Working temp.		-40		+85	$^{\circ}$
Store temp.		-40		+85	$^{\circ}\! \mathbb{C}$


E.g: SCA126T-10-232-MB: Standara shell sealed / Dual-axis / Horizontal / ±10° measure range / RS232 interface / MODBUS protocol.

Note: The RS422 / TTL output interface is only for RION 68 protocol selection.

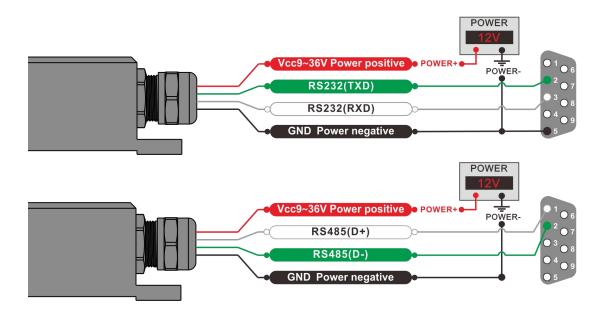
▶ MECHANICAL PARAMETERS


Connectors: 1m lead cable (customized)Enclosure material: Aluminum Oxide

o Installation: 4*M6 screws

▶ WORKING PRINCIPLE

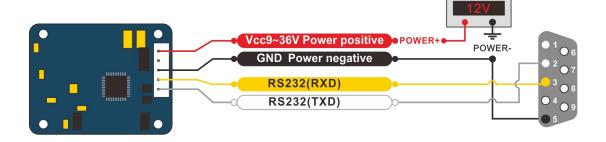
Adopt imported core control unit and apply the principle of capacitive micro-pendulum. Using the principle of earth's gravity, when the tilting unit tilts, the earth's gravity will produce a gravitational component on the corresponding pendulum, and the corresponding electric capacity will change. By amplifying and filtering the electric capacity, the inclination angle is obtained after conversion.

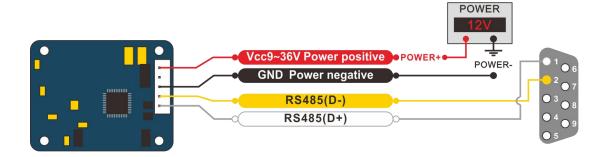

 $U_{\text{R}},\,U_{\text{L}} \text{Respectively}$ is the pendulum left plate and the right plate corresponding to their respective voltage between theelectrodes, when the tilt sensor is tilted, $U_{\text{R}},\,U_{\text{L}}$ Will change according to certain rules, so $f(U_{\text{R}},\,U_{\text{L}},\,)$ On the inclination of α function:

 $\alpha = (U_R, U_L,)$

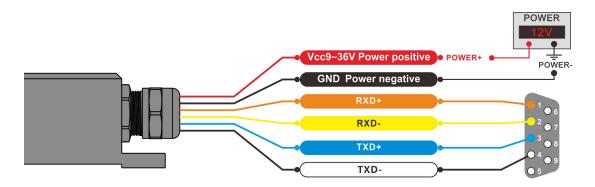
▶ ELECTRICAL CONNECTION

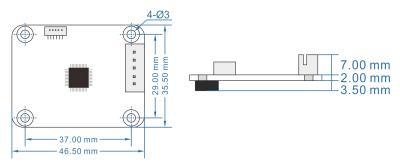
RS485 / RS232 / TTL standard shell wiring definition


	BLACK	WHITE	GREEN	RED
Thread color function	GND Power Negative	RS232(RXD) /TTL(RXD) RS485(D+)	RS232(TXD) /TTL(TXD) RS485(D-)	DC9 ~ 36V Power Positive

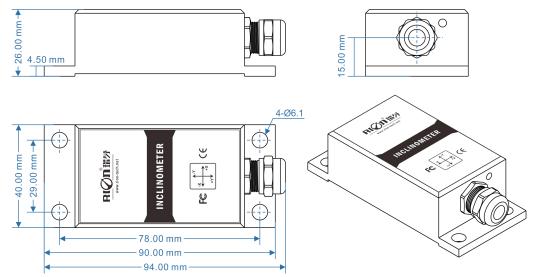


RS485/RS232/TTL single board wiring definition


POWER


RS422 standard shell wiring definition

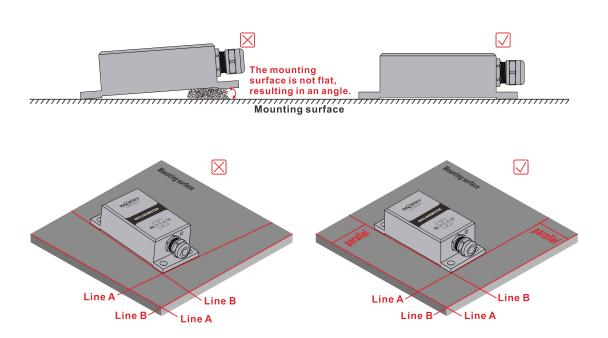
Thread	RED	BLACK	ORANGE	YELLOW	BLUE	WHITE
color	DC9~36V	GND	RXD+	RXD-	TXD+	TXD-
function	Power Positive	Power Negative	IVVD+	IVVD-	INDT	I AD-


DIMENSION

MODULE SIZE

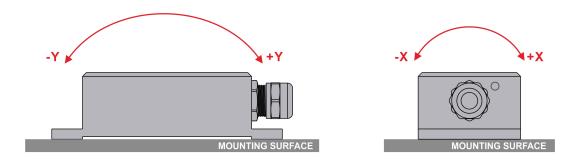
PCBA size: L46.5×W35.5×H12.5mm Installation size: L37×W29×H2mm ounting screws: 4 M3 screws

DIMENSION WITH HOUSING

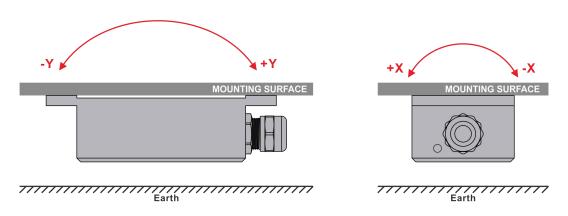


Shell size: L94×W40×H26mm Installation size: L78×W29×H4.5mm ounting screws: 4 M6 screws

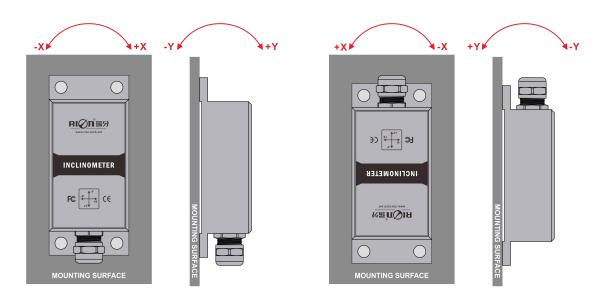
▶ INSTALLATION PRECAUTIONS


Please install the tilt sensor according to the correct method. Improper installation will cause measurement error. Pay attention to the first "surface" and the second "line":

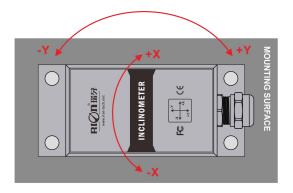
- 1) The mounting surface of the sensor and the measured surface must be tight, flat and stable. The unevenness of the mounting surface is easy to cause the angle error of the sensor measurement.
- 2) The axis of the sensor and the axis to be measured must be parallel, and the angle between the two axes should be avoided as much as possible.



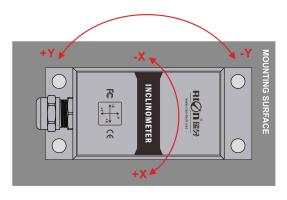
▶ INSTALLATION DIRECTION


During installation, keep the sensor mounting surface parallel to the target surface to be measured, and reduce the impact of dynamics and acceleration on the sensor. This product can be installed horizontally or vertically, please refer to the following diagram for the installation method:

Horizontal installation



Horizontal-down installation



Vertical installation

Vertical-down installation

Vertical-left installation

Vertical-right installation

► COMMUNICATION PROTOCOL

1. Data frame format: (8 data bits, 1 stop bit, no check, default rate 9600)

Identifier (1byte)	Data length (1byte)	Address code (1byte)	Command word (1byte)	Data field	checksum (1byte)
68					

Data format: hexadecimal Identifier: fixed at 68

Data length: the length from data length to checksum (including checksum) Address code: the address of the acquisition module, the default is 00

The data field changes according to the different content and length of the command word.

Checksum: The sum of data length, address code, command word and data field does not consider carry

2. The command word analysis

Command word	Meaning/ Example	Description
0X01	Read X axis angle command example: 68 04 00 01 05	Data field (0byte) No data field command
0X81	Sensor response reply E.g: 68 07 00 81 10 26 80 3E	The data field (3byte) SA AA BB data field is a 3-byte return angle value, which is a compressed BCD code, S is the sign bit (0 positive, 1 negative), AAA is a three-digit integer value, and BB is a decimal value. The other axis data is the same. Such as 102680 means -26.8°.
0X02	Read Y axis angle command E.g: 68 04 00 02 06	Data field (0byte) No data field command
0X82	Response command read Y axis angle Sensor response reply E.g: 68 07 00 82 00 66 25 11	The data field (3byte) SA AA BB data field is a 3-byte return angle value, which is a compressed BCD code, S is the sign bit (0 positive, 1 negative), AAA is a three-digit integer value, and BB is a decimal value. The other axis data is the same. For example, 006625 means 066.25°.
0X04	Read X and Y angle commands simultaneously E.g: 68 04 00 04 08	Data field (0byte) No data field command
0X84	Sensor response reply E.g: 68 0D 00 84 00 20 10 10 05 25 00 50 50 9B	Data field (9byte) SA AA BB SC CC DDSE EE FF SA AA BB: 3 characters represent the X axis SC CC DD: 3 characters represent Y axis SE EE FF: The internal temperature value of 3 characters of the product, the analysis method is the same as the X-axis angle. Angle format is the same as X axis or Y axis The angle in the left example is: X axis 20.10 degrees, Y axis -5.25 degrees, temperature: +50.5°C
0X05	Set relative/absolute zero: You can set the current angle to zero degrees for relative measurement, or you can set it	Data field (1byte) 00: absolute zero 01: relative zero

	back to the absolute factory zero degree, save after power off E.g: 68 05 00 05 00 0A	
0X85	Sensor response reply command E.g: 68 05 00 85 00 8A	Data field (1byte) The number in the data field indicates the result of the sensor response 00: set successfully FF: setting failed
0X0B	Set communication speed E.g: 68 05 00 0B 03 13 This command is set to take effect after power off and restart, and save function at power off	Data field (1byte) Baud rate: 00 means 2400
0X8B	Sensor response reply command E.g: 68 05 00 8B 90	Data field (1byte) The number in the data field indicates the result of the sensor response 00 Success FF Failure
OXOC	Set sensor output mode Response system: The upper computer needs to send read the angle command before the sensor reply the relative angle Automatic output system: After the sensor is powered on, X, Y angles are automatically output, and the output frequency is set as shown in the table on the right. (This function can be saved after power off) E.g: 68 05 00 0C 00 11	Data field (1byte) The factory default value is: 00 00 response system 01 5Hz automatic output mode 02 15Hz automatic output mode 03 25Hz automatic output mode 04 35Hz automatic output mode 05 50Hz automatic output mode Note: RS485 only has response mode with no automatic output mode
0X8C	Sensor response reply command E.g: 68 05 00 8C 00 91	Data field (1byte) The number in the data field indicates the result of the sensor response 00 Success FF Failure
0X0F	Set module address command The default address of the sensor is 00, 1.If multiple sensors are connected to a group of buses at the same time, such as RS485, each sensor needs to be set to a different address to achieve separate control and response angles. 2.If the new address is successfully changed, the address code in all subsequent commands	Data field (1byte) XX module address, the address ranges from 00 to EF. Note: All products have a common address: FF. If you forget the set address during the operation, you can use the FF address to operate the product and still respond normally.

	and response packets must be replaced with the new address code after the change to be effective, otherwise the sensor will not respond to the command. This command is a power-off save function. E.g: 68 05 00 0F 01 15 Set the address to 01. 68 05 FF 0F 00 13 Reset the general address FF to 00	
0X8F	Sensor response reply command E.g: 68 05 00 8F 94	Data field (1byte), The number in the data field indicates the result of the sensor response 00 Success FF Failure
0X0D	Query relative/absolute zero Used to query whether the current zero-degree mode of the sensor is relative zero or absolute zero E.g: 68 04 00 0D 11	Data field (0byte) No data field command
0X8D	Sensor response reply command E.g: 68 05 00 8D 00 92	Data field (1byte), The number in the data field indicates the result of the sensor response 00 Absolute zero 01 Relative zero

▶ RION MODBUS COMMUNICATION PROTOCOL

Note, please read the following items carefully before use:

1) Because the MODBUS protocol stipulates that between two data frames should be at least more than 3.5 bytes time (for example, at 9600 baud rate, the time is $3.5 \times (1/9600) \times 11 = 0.004s$). But in order to leave enough margin, this sensor increases this time to 10ms, so please leave at least 10ms time interval between each data frame.

The host sends the command-10ms idle-the slave responds to the command-10ms idle-the host sends the command ...

- 2) MODBUS protocol stipulates the broadcast address ---- relevant content of 0. This sensor can also accept the content of the broadcast address, but will never reply. Therefore, the broadcast address 0 can be used for the following purposes, for reference only.
- 1. Set the addresses of all tilt sensors of this model mounted on the bus to a certain address.
- 2. Set all tilt sensors of this model mounted on the bus to relative / absolute zero.
- 3. Test this type of sensor on the entire bus, that is, the host sends a 0 address query angle command to the bus, and the communication indicator flashes when the communication is normal.
- 3) In order to improve the reliability of the system, set address command and set absolute / relative command, both commands must be sent twice in order to be effective. "Two consecutive transmissions" means that both transmissions are successful (the slave has a reply each time), and the two questions and answers must be consecutive, that is, the master cannot insert other data frames in the middle of the two questions and answers, otherwise, this kind of command It will be locked until the power is turned off. The setting process is as follows:

Send setting address command-wait for setting success command sent by slave-(no other commands can appear) Send setting address command again-wait for setting success command sent by slave-modification successful

- 4) After power on, the above two setting commands can only be set once, if you need to set again, you need to power off and power on again.
- 5) When the normal communication has accumulated to a certain number of times, the communication indicator will flash once.

1. Data frame format:

RTU mode

Communication parameters: Baud rate 9600 bps Data frame: 1 start bit, 8 data, even parity, 1 stop bit

2. Reading angle data:

Modbus function code 03H

Master query com	mand:	Slave response :			
Sensor address	01H	Sensor address	01H		
function code	03H	function code	03	ЗН	
Access register	00H	Data length 8 bytes	00	ЗН	
first address	02H	Data word 1 lower 8 bits	50H		
Data length	00H	Data word 1 high 8 bits	46H	X axis data	
4 bytes	04H	Data word 2 lower 8 bits	00H	A axis uata	
CRC	E5C9H	Data word 2 high 8 bits	00H		
		Data word 3 lower 8 bits	23H		
		Data word 3 lower 8 bits	20H	Y axis data	
		Data word 4 high 8 bits	00H	i axis uala	
		Data word 4 lower 8 bits	00H		
		CRC		BD61H	

Read	Read measurement data command example 1 :											
Host s	Host sends 01 H 03 H 00 H 02 H 00 H 04 H E5H C9H									C9H		
Slave	response	е										
01H 03 H 08 H 50 H 46 H 00 H 00 H 23H 20 H 00H 00 H BDH 61H									61H			

Note: The data field of the slave reply frame is 50H, 46H, 00H, 00H, 23H, 20H, 00H, 00H

The X axis is the first 1-4 bytes of the data field, and the Y axis is the fifth to eighth bytes of the data field, with the low byte first. The angle is expressed in points number. One point corresponds to 0.01°, and 0.01×(points-offset) is the angle. If the measuring range is +-90°, the total number of points is 18000 points. So, 0 corresponds to -90°, 18000 corresponds to +90°, and 9000 corresponds to 0°.

Take the above data frame as an example: The angle conversion process is as follows:

- 1) Get the current angle points. Note that the low byte is first, the X axis is 4650H, and the Y axis is 2023H.
- 2) Convert to decimal, X axis: 4650H→180000, Y axis: 2023H→8227.
- 3) Subtract the offset 9000 (Note: This value is an amount related to the measurement range), X axis: 180000-9000=9000, Y axis: 8227-9000=-773.
- 4) Get the final angle, X axis: 9000×0.01=90.00°, Y axis: -773×0.01=-7.73°.

Read measurement data command example 2 :											
Host s	Host sends 01 H 03 H 00 H 02 H 00 H 04 H E5H C9H									С9Н	
Slave	Slave response										
01H 03 H 08 H 00H 00 H 00 H 00 H 00H 23 H 00H 00 H 64 H 1DH										1DH	

Assuming that the measuring range of the sensor in this example is +-45°, the total number of points is 9000 points. So 0 corresponds to -45°, 9000 corresponds to +45°, 4500 corresponds to 0°, and the angle conversion process is as follows:

- 1) Get the current angle points. Note that the low byte is first, the X axis is 0000H, and the Y axis is 2300H.
- 2) Convert to decimal, X axis: 0000H→0, Y axis: 2300H→8960.
- 3) Subtract the offset of 4500 (Note: This value is an amount related to the measurement range), X axis: 0-4500=-4500, Y axis: 8960-4500=4460.
- 4) Get the final angle, X axis: -4500×0.01=-45.00°, Y axis: 4460×0.01=44.60°.

3. Set the sensor relative/absolute zero:

Modbus function code 06H

Set the sensor relative/at	osolute zero command :	lave response:	
Sensor address	01H	Sensor address	01H
function code	06H	function code	06H
Access register	00H	Access register	00H
first address	10H	first address	10H
If the word is non-zero,	00 H	If the word is non-zero,	00H
it is a relative zero		it is a relative zero	
point, and if it is zero, it	FFH / 00H	point, and if it is zero, it	FFH / 00H
is an absolute zero	Relative / absolute	is an absolute zero	Relative / absolute
point		point	
CRC	C84FH/ 880FH	CRC	C84FH/ 880FH

Set the sensor relative/absolute zero command example:										
Host sends		01 H	06 H	00 H	10 H	00 H	FFH	C8H	4FH	
Slave respo	Slave response									
01 H	06 H	00 H	10 H	1	00 H FFH C8 H		4FH			

Note: 0010 is the register address. This register controls the sensor output to be relative zero or absolute zero. If it is non-zero (as in the above example, 00FFH is written), the output is relative zero. Conversely, if it is zero (change the 5th and 6th bytes to 00H), it is an absolute zero. The last two bytes are the CRC checksum.

4. Set the sensor address:

Set Sensor Address Code	e Command:	Slave response:				
Sensor address	01H	Sensor address	01H			
function code	06H	function code	06H			
a d dua a a	00H	register	00H			
address	11H	address	11H			
Sensor new address	00 H	Sensor new address	00 H			
Sensor new address	04H	Sensor new address	04H			
CRC	D80C	CRC	D80C			

Example of command to set sensor address:										
Host sends		01 H	06 H	00 H	11 H	00 H	04H	D8H	0CH	
Slave respo	Slave response									
01 H	06 H	00 H	11 H	H	00 H	0	4H	D8 F	ł	0CH

Note: 0011H is the register address, which controls the sensor address. In the above example, the address of the sensor is changed to 0004H, and the last two bytes are the CRC checksum.

5. Set the sensor baud rate:

Set the sensor baud rate	command:	Slave response:				
Sensor address	Sensor address 01H		01H			
function code	function code 06H		06H			
address	00H	register	00H			
	08H	address	08H			
The baud rate needs to	00H	The new baud rate of	00H			
be changed	A2H	the sensor	A2H			
CRC	89B1	CRC	89B1			

Example of Set the sensor baud rate command:										
Host send 01 H 06 H 00 H 08 H 00 H A2H 89H B1H									В1Н	
Slave respo	Slave response									
01 H	06 H	00 H	08 H	1	00 H	A	A2H 89 H			B1H

The above example is to set the baud rate to 19200, which will take effect after power on again. The factory default is: 9600bps

Note: 0008 is the register address, this register controls the sensor baud rate.

The baud rate setting corresponds to: A0H: 4800 A1H: 9600 A2H: 19200 A3H: 38400 A4: 115200

six. Set the sensor communication character format:

6. Set the sensor communication character format:

Set the sensor communic	cation character format:	Slave response:				
Sensor address	01H	Sensor address	01H			
function code	06H	function code	06H			
address	00H	register	00H			
	09H	address	09H			
Format of sensor	00H	New format for sensors	00H			
changing communication character	01H		01H			
CRC	9808	CRC	9808			

Example of Set the sensor communication character format point command:										
Host sends 01 H 06 H 00 H 09 H 00 H 01H 98H 08I								08H		
Slave respo	Slave response									
01 H	06 H	00 H	09 F	1	00 H	01	01H 98 H		08H	

The above example is to set the byte format to: a start bit + 8 data bits without parity + 1 stop bit It is valid after power on again. The factory default is a start bit + 8 data bits, even parity + 1 stop bit Note: 0009 is the register address, which controls the character format of the sensor communication.

0000H: one start bit + 8 data bits, even parity + 1 stop bit

0001H: one start bit + 8 data bits without parity + 1 stop bit

Add: Block 1, COFCO(FUAN) Robotics Industrial Park, Da Yang Road 90, Fuyong Distict, Shenzhen City, China

Tel: (86) 755-29657137 (86) 755-29761269

Fax: (86) 755-29123494

E-mail: sales@rion-tech.net

Web: www.rionsystem.com